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Abstract— It is common for us to feel pressure in a competi-
tion environment, which arises from the desire to obtain success
comparing with other individuals or opponents. Although we
might get anxious under the pressure, it could also be a drive
for us to stimulate our potentials to the best in order to keep
up with others. Inspired by this, we propose a competitive
learning framework which is able to help individual robot to
acquire knowledge from the competition, fully stimulating its
dynamics potential in the race. Specifically, the competition
information among competitors is introduced as the additional
auxiliary signal to learn advantaged actions. We further build
a Multiagent-Race environment, and extensive experiments are
conducted, demonstrating that robots trained in competitive
environments outperform ones that are trained with SoTA
algorithms in single robot environment.

I. INTRODUCTION

It has been demonstrated that competition can help im-
prove the physical effort tasks [1]. For example, multiple
race athletes often have the ability to achieve better results
in competition that exceed their performance in individ-
ual training. Currently, competitive games have been well-
studied in multi-agent reinforcement learning (MARL) field,
like the professional-level performance of gaming agents
implemented in StarCraft II [2], gFootball [3], and Honor of
Kings [4]. In these studies, researchers pay more attention to
the entire team performance, such as the win rate in a mixed-
competitive game, converging to Nash Equilibrium (NE)
in zero-sum games [5], or interactions and communication
among cooperative agents [6]–[10]. However, the potential
benefits of leveraging competition information to improve
the individual performance is generally overlooked.

In this study, we focus on how to leverage the competition
information among multiple robots to facilitate individual
robot learning. Our approach aims to understand the con-
nection between favorable actions and rewards. We propose
a competitive learning framework which is able to help
individual robot to acquire knowledge from the competi-
tion, fully stimulating its dynamics potential in the race.
Specifically, the competition information among competitors
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Walker2ds with Competition

Walker2d without Competition

Fig. 1: Episode reward comparison between competitive and
non-competitive Walker2d environment. The performance
of Walker2ds trained with competition can reach 120% of
the baseline.

is introduced as the additional auxiliary signal to enhance the
learning process. As is shown in Fig.1, we find that under the
competitive multi-agent environment, the individual robots
can obtain higher rewards and continue to stimulate their
dynamics potential compared with non-competitive environ-
ment, breaking through the baseline. The main contributions
of the work are summarized as follows:

• We propose a competitive reinforcement learning frame-
work in which we use additional competition data
among multiple robots to enhance the performance of
an individual agent.

• We suggest that even by incorporating fundamental raw
competitive data into the observation as supplementary
auxiliary signals, and maintaining the reward mecha-
nism unchanged, the untapped potential of individual
robot can be further stimulated.

• We build a set of self-interest competition environments
called Multiagent-Race 1. We investigate how varying
numbers of competitors and competitive signals influ-
ence the learning performance, and a 20% improvement
has been gained over SoTA with the proposed frame-
work (Table.I).

II. RELATED WORK

A. Competition in Multi-agent Task

There are many types of competition tasks in MARL.
Zero-sum games can be summarised in a linear program-

1https://github.com/KJaebye/Multiagent-Race
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ming (LP) formulation to address Nash equilibrium (NE)
problem [11]. General-sum games might contain cooperation
or team-level competition that might exist multiple NE
points [12]. Many MARL studies are based on particle
dynamics simulators [13], [14], such as MPE (Multi-Agent
Particle Environments). Besides, a few are based on well-
developed game engines [2], [4]. And some interactive tasks
are based on robotics simulators. For example, researchers
build a series of competitive and adversarial environments
in MuJoCo [15], involving lots of physical confrontation
environments, control strategies for physically simulated
two-player competitive sports [16].

The above mentioned tasks are zero-sum or general-
sum games that pay more attention to the entire team
performance. However, in a self-interested game, each player
strives to maximize their own utility or payoff without
considering the overall outcome or cooperation with other
players [17]. In the proposed work, we aim to facilitate
individual robots in a continuous action space. There are
a series of specialized algorithms dealing with continuous
action spaces [18]–[24], and many benchmarks have been
established [25]–[28]. In our work, we use Proximal Policy
Optimization (PPO) [21] and its multi-agent variant to learn
a continuous action task.

B. Learning from Competitive and Adversarial Data

Contrastive learning (CL) has been widely used in word
and sentence embedding in NLP [29], image classification in
CV [30], and implicit collaborative filtering in information
retrieval (IR). It is able to extract meaningful representations
through positive and negative data pairs. Furthermore, gener-
ative adversarial network (GAN) also has drawn significant
attention in recent years [31] for selecting negatives, while
the confrontation between the generator and discriminator
may not converge to the ideal NE, and there is still potential
for further exploration and improvement in the adversarial
negative sampling method [32]. Moreover, some work intro-
duces external disturbance from another adversarial robot to
improve the robustness of robotic manipulation tasks [33].

Our idea shares fundamental similarities with the approach
of adversarial learning and contrastive learning [34], [35]. We
construct the competitive scenario that generates comparative
data between opponents and learn features from it.

III. PROBLEM FORMULATION

In general, agents can be trained to focus on specific
skills by modifying the reward mechanism. In more cases,
however, we do not want to change the reward mechanism
since performance is somewhat sensitive to the reward,
and inappropriate rewards might drown out correct reward
signals. It comes to a problem: Can we acquire knowledge
from raw comparative information, to surpass the results of
normal training?

We first formulate the single-agent continuous action task
as a Markov Decision Process (MDP), which can be de-
scribed as a tuple ⟨S,A, P,R⟩. S is the state set of a system
or environment. A is the action set that the agent can take.

P is the state transition function, and P (s′|s, a) represents
the transition probability distribution of the system when
transiting into the next state s′ ∈ S from state s ∈ S
after taking an action a ∈ A. R is the reward function.
r = R (s, a) is the reward given to agent after taking action
a ∈ A under s ∈ S. The aim is to find a policy π∗, to
maximize the expected value of cumulative discount rewards:

π∗ = argmax
π

Jπ

Jπ =

∞∑
t=0

γt · E [R(st, at)|s0, π]
(1)

where γ represents the extent to which the agent discounts
future awards.

In this work, we consider the multi-agent scenario. We
describe the corresponding MDP as a tuple ⟨S,A, P,R⟩ that
includes N number of agents. S,A are state and action
tuples, respectively, where S = (S1, S2, · · · , SN ), A =
(A1, A2, · · · , AN ). P and R remain the same as settings in
MDP because agents are totally homogeneous and there is
no physical interaction between competitors. In this regard,
the objective function in (1) can be extended as

Ĵπ =
1

N

N∑
i=1

∞∑
t=0

γt · E
[
R(sit, a

i
t)|si0, π

]
(2)

where sit ∈ Si and ait ∈ Ai are the state and action of the
i-th agent. However, the above setting only facilitates the
parallel exploration, but does not provide extra benefits due
to the lack of interaction between agents.

In practical training, other agents for the i-th agent always
can provide information which can be augmented to the state.
We use oit to denote the competitive information which can
be observed from other agents, and may form a new state as

s̄it = [sit, o
i
t]

and the objective function becomes

J̄π̄ =
1

N

N∑
i=1

∞∑
t=0

γt · E
[
R(s̄it, a

i
t)|s̄0, π̄

]
(3)

and the optimization problem is changed as

π̄∗ = argmax
π̄

J̄π̄

What we hope to address is therefore answer if the intro-
duction of the extra state information oit could be beneficial
and lead to

J̄π̄∗ > Jπ∗

If the results hold, then we may develop a set of new multi-
agent competitive learning methods for the single agent.
Please note that oit can be raw measurement information or
encoding features from observation of other agents.
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Fig. 2: Framework for learning knowledge from compara-
tive information. Where a denotes actions, s represents the
proprioceptive state, and o is the competitive observation.

IV. METHODOLOGY

A. Framework

We propose a framework to exploit competitive infor-
mation among multiple agents, shown in Fig.2. The main
purpose is to acquire knowledge from comparative data.
We run a multi-agent competitive task to obtain additional
comparable information and then distinguish positive or
negative data for better training. It is akin to the contrast-
ing representation between anchor/positive/negative samples.
Using the Walker2d scenario as an illustration, shown in
Fig.3, if a walker demonstrates exceptional performance, it
must be the fastest participant in the race. Concurrently, the
robot gathers distinctive relative details, like maintaining a
consistently positive relative speed compared to others. This
situation creates an auxiliary signal connecting high-speed
running and favorable data (comprising state-action-reward
pairs).

The framework includes mainly two parts: Training and
Evaluation. We train robots with competitive observation
during the training stage, while only proprioceptive state is
required during the evaluation stage.

B. Policy Training & Experience Sharing

The policy training part conducts competitive tasks among
multiple agents: agents collect full information involving
proprioceptive state and competitive observation. The com-
petitive information vector is a concatenation of relative
observation against rivals.

We use the classical actor-critic algorithm PPO and its
multi-agent variant [14] as the algorithmic benchmark be-
cause PPO has shown generally favorable results in contin-
uous action control tasks. It becomes normal single-agent
learning when there is only one robot in the race.

Since robots are completely homogeneous and exclusively
self-interested, we adopt a shared policy among robots. Dur-
ing the training stage, data are sampled distributedly, but the
policy is trained centrally since we only maintain one shared
policy (actor) π

(
ai | s̄i;θ

)
for all agents, and one shared

value (critic) v(s̄i;ϕ) to approximate value function Vϕ,
where θ and ϕ denote parameters of the shared policy/value
network. Simultaneously, the experience replay buffer D is

also shared across agents to aggregate all experience τ =
{s̄, a, r}, r = R(s̄, a) is the reward given to agents after
taking action a under newly designed state s̄. In the training
part, critic learns an optimal ϕ∗:

ϕ∗ = argmin
ϕ

1

∥D∥T
∑
τ∈D

T∑
t=0

(Vϕ(s̄t)−R(s̄t, at))
2 (4)

Here the competitive observation o is introduced as an
additional auxiliary signal where we have s̄ = [s, o], helping
the critic to get a more accurate estimation of experience.
We also use GAE(General Advantage Estimation) [36] to
estimate the advantages of actions Â. Then, we compute the
objective function to update the policy:

L(s̄, a, ᾱ, θnew, θold) =

min
(πθnew(a | s̄)
πθold(a | s̄)

Âπ
θold (s̄, ᾱ),

clip
(πθnew(a | s̄)
πθold(a | s̄)

, 1− ϵ, 1 + ϵ
)
Âπ

θold (s̄, ᾱ)
) (5)

We define the probability ratio between the shared new
policy and the old one as πθnew (a|s̄)

π
θold

(a|s̄) . ᾱ is the action set of
all agents, excluding the current agent. Hyperparameter ϵ is
to limit the difference between old and new policies within
a small range.

By sharing experience buffer D, we attain a contrast-
ing effect from competitive data during the critic training.
This strengthens the association between rewards and posi-
tive/negative actions. The process described by (4) is similar
to the step of labeling positive and negative samples for train-
ing in CL [30]. The difference lies in the fact that we utilize
reinforcement learning reward measurement that naturally
provides label-like signals to label competitive messages.
Through incorporating the contrast provided by the multi-
agent competition, competitive representation facilitates a
clearer and more explicit understanding of the relationship
between state and reward.

C. Robot Observation Construction

We tailor observation for the robot in order to appropri-
ately introduce the competitive information. Different from
the previous study that employs global information [13], we
only consider the partial opponent observation that is more
readily obtainable in real-world scenarios.

As illustrated at the bottom of Fig.2, we consider the
new state of the i-th agent s̄i = [si, oi] to be a con-
catenation of proprioceptive state si and competitive ob-
servation oi, or we call it competitive information which
is obtained by comparing with other participants. The first
part refers to the sensory feedback that robot receives from
joints and muscles, providing measurements of motions and
torques. The second part encompasses relative information
that agents treat as competitive pressure. We denote oi =
[oi1, oi2, ..., oij , ..., oiN ], where oij is the observation of the
agent i regarding to agent j. Competitive observation can be
any differentiable signals or any other comparable features.
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Fig. 3: The proposed Self-Interest Competition Environments
Multiagent-Race. Three walker2d robots racing is illustrated
as an example.

In this work, competitive information of the i-th robot is a
concatenation of differences in velocities and displacements
oij = [xj − xi, vj − vi], which is related to all robots,
including itself. xi, xj and vi, vj represent displacement and
velocity of the i-th and j-th robot, respectively. Thus, the
length of new state s̄ depends on the number of participants
in one race.

D. Evaluation

During the evaluation part, competitive messages are un-
necessary, and agents exclusively rely on the proprioceptive
state. To maintain alignment with the input dimensions of
the neural network, we do zero-padding on the missing
dimensions.

V. EMPERICAL RESULTS

A. Environment

We first build a series of self-interested and competitive
environments named Multiagent-Race (Race). We extend the
single-robot running to multi-robot racing. It is important
to underline that environments are not the straightforward
parallel environments of many solitary agents for sampling
speed-up like what has been done in NVIDIA Isaac-Gym,
but a real multiplayer competitive racing game, shown in
Fig.3.

We provide six Race environments including
MultiAnt, MultiWalker2d, MultiHalfCheetah,
MultiHopper, MultiSwimmer, MultiHumanoid. In
Race, self-interested agents face the same target: reach
the maximum speed within a limited duration. Relative
position and velocity along the desired orientation are
treated as competitive information, fed to each robot. The
rewarding for each type of robot maintains alignment
with the Gym. We conduct experiments on four tasks:
MultiAnt, MultiHopper, MultiWalker2d, and
MultiCheetah. To avoid uncertainty, we take the average
of over 10 trials using random seeds.

B. Baselines

We primarily consider several benchmarks for comparison
to explore the effectiveness of our approach. θ and ϕ are
used to represent shared parameters, then θi and ϕi denote
separated parameters. X represents the robot number in

Race. Our experiments are conducted in 2, 3, 4, and 5 robots
race respectively, where X = 2, 3, 4, 5, to show the effect of
different scales of competition.
SA: PPO training in a single-agent environment. We have

π (a | s;θ) and v(s;ϕ).
XA-Sh-Decent: training in X number of agents environ-

ment but with no competitive information. Here we define
the knowledge-level information-sharing that agents share
the same networks and experiences. The agent uses its
decentralized local state as critic input. Where we have
π
(
ai | si;θ

)
and v(si;ϕ).

XA-Sh-Cent: training in X number of agents environ-
ment but without competitive information. Policy and experi-
ence are shared. Agents use a centralized global state as critic
input. We have π

(
ai | si;θ

)
and v(s;ϕ), in which s is the

global observation, denotes the concatenation of (s1, ..., sN ).
XA-Sp-Decent-Comp: Training in X number of agents

environment with competition. Every agent trains its own
specific policy using local observation as value input. We
can simply consider it to be a parallel training of SA with
competitive observation. It is different from the proposed
approach: although competitive information is applied to
agents, no contrastive representation is formed because expe-
riences are not shared. Therefore, the agent cannot improve
itself by learning from others. Where we have π

(
ai | s̄i; θi

)
and v(s̄i;ϕi).

XA-Sh-Decent-Noi: Training in X number of agents
environment with random noise. Previous studies argued
that noise has a significant performance improvement on
multi-agent learning rather than global information [37]. To
validate that agents indeed acquire effective experience from
competitive information, we replace with zero-mean random
noise as a control group. Where we have π

(
ai | [si, n];θ

)
and v([si, n];ϕ), in which n denotes the noise.

XA-Sh-Decent-Comp (Proposed): Training in X num-
ber of agents environment with competitive input. Agents
share policy and experience. Where we have π

(
ai | s̄i;θ

)
and v(s̄i;ϕ).

C. Experimental Details

Networks: We use the same actor-critic network structure
as stable-baseline3 [25] and TianShou [27]: 2 hidden layers
MLP with 64 units each, and Tanh activation which is
then fed into the Gaussian policy action out layer (except
the MultiCheetah task where we use Beta distribution
policy).

Algorithm Parameters: Routine hyperparameter settings:
Adam optimizer with learning rate 0.0005 and linear learning
rate decay strategy. The clipping parameter is 0.2, dis-
counting factor is 0.995, and generalized advantage estimate
parameter is 0.95. Our sampling number is larger than Tian-
shou and Stable-Baseline3 because we do not use the mini-
batch update method for each iteration, but our optimization
number is much less than theirs. However, this does not affect
our comparison once they have converged.
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Fig. 4: Performance of different settings on 3-agent environments. SA: Yellow . 3A-Sh-Decent: Blue . 3A-Sh-Decent-Comp:
Red . 3A-Sp-Decent-Comp: Green . 3A-Sh-Cent-Comp: Brown .

Non Noi Comp
Class

50
00

52
00

54
00

56
00

58
00

60
00

62
00

64
00

66
00

Av
er

ag
e 

Ep
is

od
e 

R
ew

ar
d

MultiAnt

(a)

Non Noi Comp
Class

62
50

65
00

67
50

70
00

72
50

75
00

77
50

80
00

Av
er

ag
e 

Ep
is

od
e 

R
ew

ar
d

MultiHalfCheetah

(b)

Non Noi Comp
Class

50
00

55
00

60
00

65
00

70
00

75
00

80
00

MultiWalker2d

(c)

Non Noi Comp
Class

32
00

34
00

36
00

38
00

40
00

Av
er

ag
e 

Ep
is

od
e 

R
ew

ar
d

MultiHopper

(d)

Fig. 5: Comparison between 3A-Sh-Decent (Non: non-
competitive information as inputs), 3A-Sh-Decent-Noi (Noi:
noise information as inputs), and 3A-Sh-Decent-Comp
(Comp: competitive information as inputs).

D. Role of Competition

We benchmark the proposed approach against baselines
using 3-robot environments as a representative case. It is
important to note that our method might yield better perfor-
mance in environments with a different number of agents.
Results are illustrated in Fig.4. Our proposed approach,
training with competition and shared policy (3A-Sh-Decent-
Comp), outperforms all baselines on task MultiAnt,
MultiHalfCheetah, and MultiWalker2d. Besides,
we notice that SA and 3A-Sh-Decent have a similar trend,
but the latter slightly exceeds the former. This occurs because
multiple agents gather more data leading to a more balanced
distribution of data abundance and variance and increasing
accuracy in the sampling results. Comparing 3A-Sh-Decent
and 3A-Sh-Decent-Comp, we can conclude that robots learn
valuable knowledge from additional comparative informa-
tion. Especially in task MultiAnt, MultiHalfCheetah,
and MultiWalker2d, we observe around 13%, 11%, and
16% improvement respectively.

However, it does not work on MultiHopper. In contrast,

settings of competitive training seem to negatively affect
the results. This phenomenon could be attributed to the
Hopper task being overly simplistic, and the competitive
observation might drown out the proprioceptive state. On the
other hand, it appears that the dynamics of the Hopper has
been thoroughly explored and understood, leading to little
improvement under competition.

E. Ablation Studies
We perform a series of ablation studies to obtain a more

profound understanding of how competitive scenarios yield
valuable data for the learning process.

Policy and Buffer Sharing: We conducted controlled
experiments on four environments depending on whether the
policy network and experience reply buffer are shared or
not, using the 3-robot Race game as an example. In 3A-
Sp-Decent-Comp, robots enjoy independent policies, while
robots share one policy and buffer in 3A-Sh-Decent-Comp.
Results are shown in Fig.4. Irrespective of the varying
tasks, agents with a shared network consistently demonstrate
superior performance compared to their counterparts utilizing
independent policy. This substantiates the explanation of (4)
discussed above.

Moreover, as there is no interaction and cooperation be-
tween competitors, the value network need not coordinate the
centralized global states of all robots. By contrast, centralized
value inputs might confuse agents and harm the performance
of evaluation, illustrated as brown lines in Fig.4.

Learning from Competition: There remains ongoing
debate regarding the influence of external information on
the effectiveness of training. Some studies have proved that
adding more comprehensive information to the MARL task
as additional states could improve the performance [14], [38].
However, others believe the network might treat external
messages as noise that encourages more exploration [37],
rather than learning valuable features from messages.

We employ random noise that is equivalent in length
to the competitive information message as a controlled
group, named XA-Sh-Decent-Noi. 3S-Sh-Decent is also
taken as the comparison using fixed zero padding instead. We
compare the performance of 3A-Sh-Decent, 3A-Sh-Decent-
Noi, and 3A-Sh-Decent-Comp in Fig.5. Our results can
corroborate the viewpoints presented in [37]: assigning noisy
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Fig. 6: Results on various numbers of agents with/without competitive info.

TABLE I: Comparison with SoTA PPO Baselines. Task1: Ant, Task2: Walker2d, Task3: HalfCheetah, Task4: Hopper.
A: OpenAI [21], B: Stable-Baselines3 [25], C: Tianshou [27]. XA-Sh-Decent-Comp is the proposed approach.

SOTA PPO Baselines
SA XA-Sh-Decent 3A-Decent-Noi XA-Sh-Decent-Comp

A B C 2 3 4 5 2 3 4 5
1 1327±452 3900±850 4993±326 5468±371 5552±441 5987±512 5728±237 5781±365 5926±456 5960±207 6056±382 6140±302
2 3424 3479±822 4896±704 5579±488 6107±463 5902±665 6491±637 5711±441 6311±412 5876±1019 7094±945 6683±13796634±2039
3 1669 5819±663 7337±1508 4988±334 7284±289 6706±519 6671±293 6505±569 7063±363 7342±213 7197±498 6790±277 6873±702
4 2316 2410±10 3128±413 3834±313 3913±187 3701±201 4059±165 4002±205 3679±89 3715±54 3688±173 3598±267 3606±77

observations as inputs enhances the network’s exploration
capability, consequently leading to higher rewards. Simulta-
neously, we also prove that agents can acquire knowledge
from competitive observation, leading to a higher reward
surpassing those of the noise experiments.

VI. DISCUSSION

We find there exists an unavoidable correlation between
the results of games, the complexity of robots, and the
number of racers involved. To explore how the number
of racers affects the results, we conduct experiments with
different numbers of participants, shown in Fig.6.

We compare the outcomes of utilizing competitive in-
formation in different environments and varying numbers
of runners in Race tasks. For the sake of fairness, we
record data after convergence. The results shown in Fig.6
indicate that training with competitive pressure can promote
performance regardless of racer number, except Hopper
because we believe its potential has been fully explored.
Besides, in Table.I, we also compare the experimental results
with the state-of-the-art PPO baselines. Our proposed method
makes a great improvement on Walker2d and Ant, then a
slight improvement on HalfCheetch task.

Furthermore, we discovered that on more challenging
tasks like more complex robots, the advantages of utilizing
competition are more pronounced. For example, robot Ant
simulates in the three-dimensional environment which is
more complex, robots achieve higher running speeds with
an increase in the number of competitors. However, for
agents with simpler structures, indiscriminately increasing
the number of competitors could potentially lead to a de-
crease on final rewards. Declines are observed on 2D robots
Hopper, HalfCheetah, and Walker2d. This is because
robots with simple structures and straightforward dynamics
can easily reach their ability boundary, while robots with

complex structures and challenging tasks require more so-
phisticated controllers. We obtain the best performance on 2-
HalfCheetah, 3-Walker2d, 5-Ant, and single-Hopper.

In addition, an excessive number of competitors, however,
introduce an excessive amount of competitive information,
resulting in an increase in the observation dimension. The ad-
ditional signals representing competition could overshadow
the proprioceptive signals of the agent. This leads to chal-
lenges in robot learning when the number of runners becomes
excessive.

Although our work primarily focuses on PPO as the core
algorithm, our framework is adaptable to any other on-policy
multi-agent algorithms. On-policy algorithms, by not relying
on past experiences, can establish precise comparative fea-
tures within a single batch of data sampled by the current
policy. The framework cannot adapt to off-policy algorithms.
The preservation of old experiences is common practice in
off-policy methods, leading to the absence of a baseline value
for evaluating the comparison of information along a long-
term training process.

VII. CONCLUSION

In this work, we propose a competitive learning framework
that can stimulate robots’ potential. Our method effectively
leverages the competition, allowing for increased explo-
ration and exploitation of comparative data, even using raw
data as additional input. Through extensive experimentation,
we have empirically demonstrated that, under competitive
learning among multiple self-interested racers, our method
can surpass the majority of SoTA benchmarks, including
Tianshou and Stable-Baselines3. In the future, how proprio-
ceptive signal to additional signal ratio influences the training
can be further explored. Besides, more experiments can be
implemented to verify the effectiveness in the real world.
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